
Simplify complex functional
programming tasks with AI

01/ www.brillio.com

GenAI can streamline functional programming (FP) with

automation, enabling developers to focus on the creative

and intricate aspects of platform engineering

Key aspects that enhance an
FP developer’s experience
What are the key aspects that make life easier for FP developers? First, immutability helps reduce bugs and

avoid race conditions, making concurrent programming safer. Then, there’s modularity, where one can rapidly

reuse and scale components. Higher-order functions let developers pass functions around and create powerful

abstractions. Declarative programming makes code readable and easier to access. Lazy evaluation boosts

performance by only evaluating expressions when needed and even supports infinite data structures. Finally,

robustness ensures the code is more resilient and has fewer bugs, thanks to static typing that catches errors

early. Together, these aspects make for a smooth and reliable development process.

FP developers face several challenges too. These include a steep learning curve with new concepts and

methods, performance issues stemming from high memory usage, the need to avoid mutable data, and

missing imperative features like database operations and verbosity. Additionally, there are concerns about

resource overheads due to recursion and higher CPU usage, a limited tooling ecosystem, and industry

adoption issues, as functional programming is not a mainstream field and requires skilled programmers.

2

The ‘value’ of time a human spends at most software companies is 20–100x the value of machine time

because of human expertise in decision-making and high costs of automation. Optimizing capabilities must

always be done to save developer time and effort. The technology landscape evolves rapidly and instilling

a robust developer experience is key to driving success in the modern software development lifecycle.

Maintaining a high degree of clarity in optimizing the developer experience yields several benefits. Happy

developers are more likely to be productive and innovate, reducing cognitive load and leading to faster

and more reliable software releases. They collaborate better and stay updated with the latest technology

offerings, making them more adaptable to change management.

On the contrary, a not-so-great developer experience can lead to friction, impeding development cycles,

turnover, and product quality. The outcome of a positive developer experience is more than just about

having good metrics, it’s about delivering business value. If one waits for the metrics to determine if there

is a problem, then it’s too late. Developer experience friction takes shape in a few ways, as follows:

Key challenges that hurt an
FP developer’s experience

Why are these important?

 Reducing
the cognitive

load

HOFs and
Currying

Inherent
observability
and tooling
integration

Immutable
Data

Debugging
and Testing

Key difference

Can GenAI help?

Referential
transparency

Abstraction
complexity

Developer experience

challenges in functional

programming are not unique,

but there are some differences

from imperative programming.

Developer experience friction takes many shapes

3

Developer experience challenges in FP are not unique, but there are some stark differences from imperative

programming as follows:

GenAI can help address these challenges, offering solutions that make tasks easier by reducing the

mental effort needed to work with functional programming concepts.

A deep dive into developer experience
and its significance

People

Understand individuals’ pain points and

challenges, such as friction arising from skill gaps

and organizational structure. Enterprises must

be cognizant of these human factors to allay any

concerns that may lead to conflict.

People

To address processes, teams must focus on being

metrics-driven but understand that all friction is not

solely technology-based. Use tools like value stream

mapping to assess lead and wait times and overall

process cycle times.

Process

Technology is another area that leads to developer experience friction and too much focus is placed on

it as being the sole cause. While having the right tools and platforms is important, there must be more

focus on ownership and continuous improvement based on feedback instead of relying on tech alone to

solve every problem.

Technology

• Understand pain and
friction points

• Understand skillset
challenges

• Understand organizational
structure friction

Process

• Be metrics-driven
• Understand that all friction

is not tech-based
• Value stream map to

identify lead, wait, and
overall cycle times

Technology
• Right tools for the job
• Well-defined ownership
• Continuous

improvement based on
feedback

Abstraction complexity: It can be hard to understand how different parts of the code fit together.

Immutable data: Data cannot be changed once created, which can be tricky to manage.

Referential transparency: Functions always produce the same output for the same input, which is different

from how things usually work in imperative programming.

Observability and tooling: It can be harder to monitor and debug functional programs because of their

unique nature.

Debugging and testing: Finding and fixing bugs can be more challenging.

(Too much focus here)

4

Developer experience principles

Emphasize simplicity in software development. Maintain clear and concise documentation, practical

examples, and clear error messages to aid developers. Furthermore, APIs and libraries should be

intuitive, avoiding unnecessary complexity and abstraction. These considerations drive a good

experience by making code more accessible and easier for developers to work with.

Principle 1: Keep it simple, stupid (K.I.S.S.)

Craft well-defined and documented standards across software development, including naming

conventions, coding styles, and design patterns. Consistency improves readability, reducing errors

and enhancing collaboration.

Principle 2: Consistency

Strive to build and test code quickly to find and fix issues early. With fast build times, automated

tests, and instant previews, developers can spot problems immediately and correct them before

they snowball into bigger issues. This approach improves the overall quality and efficiency of the

software development process.

Principle 3: Fail fast

Invest in an engineering platform that abstracts complexities, allowing for a modular and

interchangeable self-service paradigm. This entails building a system where tools and components

can be easily added, replaced, or customized without extensive manual intervention. Such platforms

enhance flexibility and scalability, enabling developers to focus on innovation and problem-solving

instead of being bogged down by infrastructure constraints.

Principle 4: Tooling ecosystem

Lean on supervised learning and supportive models to enhance development processes. By leveraging these

models, teams can effectively share knowledge, improve skills, and drive innovation, ensuring that learning is

integral to their workflow. This collaborative learning environment fosters growth and adaptability, enabling

teams to stay ahead in a rapidly evolving landscape.

Principle 5: Learning

Platform engineering provides composable and replaceable self-help capabilities. It can accelerate application

delivery and the pace at which developers produce business value. By 2026, 80% of large software engineering

organizations will establish platform engineering teams as internal providers of reusable services, components,

and tools for application delivery. Platform engineering will ultimately solve the central problem of cooperation

between software developers and operators (Gartner).

Platform engineering to the rescue

5

Let’s look at the four quadrants above and how to leverage a platform effectively.

Leverage your platform

Starting the platform journey

These include aspects we are both aware of and understand well. This is where the platform journey should

start ideally, where clarity exists.

Known knowns

These include things we are aware of but don’t fully understand. A platform can help bridge this gap by

providing insights that improve understanding.

Known unknowns

This quadrant includes things we understand but who’s existence we are not yet aware of. By leveraging

a platform, developers can focus on surfacing and addressing hidden or underutilized areas.

Unknown knowns

Known
knowns

Things we are aware
of and understand

Start your platform
journey here

So that developers have
the time and energy to

focus here

Known
unknowns

Things we are aware of
but don’t understand

Unknown
knowns

Things we understand
but are not aware of

Unknown
unknowns

Things we neither
understand or are

aware of

Start your platform journey from the areas of known information and understanding, gradually moving

toward addressing knowledge gaps so developers can focus their time and energy on deeper unknowns and

more valuable tasks.

There are the most challenging in the quadrant—things that neither are understood nor

recognized. The platform journey eventually aims to reduce uncertainty in this quadrant.

Unknown unknowns

6

GenAI plays an important role in platform engineering by automating and optimizing

complex processes, enhancing developer productivity, and improving overall system

reliability. Integrating GenAI into platform engineering allows developers to focus on

innovation and higher-level tasks while AI handles predictive operations. GenAI’s ability

to incrementally learn and improve will ultimately reduce errors, improve scalability, and

accelerate software development lifecycles, reshaping how platforms can be engineered

and maintained.

However, one of the challenges in leveraging GenAI is the occurrence of

hallucinations—instances where AI generates information that seems plausible but

is inaccurate or irrelevant. These hallucinations can disrupt processes, particularly in

high-stakes platform environments where precision and reliability are key. To mitigate

such disruption, performance gaps in GenAI tools are supplemented with Brillio’s

proprietary IP and accelerators. These solutions ensure that when GenAI falls short,

Brillio's enhancements provide the necessary accuracy and operational consistency,

addressing any discrepancies that might arise from hallucinations or tool limitations.

GenAI can filter out valuable insights amidst the noise, focusing on critical signals that

matter the most to performance, efficiency, and problem-solving. It continuously

monitors data and flags when performance moves beyond predefined thresholds,

indicating areas for developers to act. Developers can leverage AI to identify deviations,

anomalies, or inefficiencies, ensuring focus on meaningful improvements while reducing

distractions arising from non-essential events. Some popular AI code assistants for

functional programming include Codeium, Tabnine, GitHub Copilot, Replit, and Blackbox

AI. Some AI code review tools for functional programmers include Codacy, deepsource,

Sonarqube, CodeScene, and GitHub Copilot.

In the 'build vs buy' debate, the build approach offers advantages in terms of customization

and control since developing AI in-house will tailor solutions to meet business needs that

align perfectly with the platform’s goals. However, it comes at a high cost, requiring

significant financial investment and highly specialized talent. The buy approach, with

pre-built tools like the ones mentioned earlier, offers speed and cost-effectiveness, allowing

for quicker integration and benefits realization. However, to overcome the limitations of

pre-built solutions, such as the potential lack of flexibility and control, Brillio enhances these

platforms with its accelerators to provide superior customization and close the gap on any

shortcomings that arise due to vendor dependencies or integration challenges.

GenAI’s role in platform engineering

7

With ChatOps, developers can interact with their platform via chat-based commands to speed up task

execution, aimed at improving the experience by streamlining routine actions. LLMs must be trained with

supervision and tailored for platform planes to understand prompts and execute tasks based on platform

requirements to ensure they align with platform-specific processes. Let’s break down the different areas of

platform engineering that an LLM would need to interact with.

Improve developer efficiency by automating tasks while ensuring compliance, security, and observability

across the platform. A cohesive AI platform allows for a central point for the community to find new and

existing capabilities across tooling, platforms, and AI capabilities. In a fast and changing landscape, having

quick feedback loops and understanding the realization of business value are key to driving overall success.

The AI portal must be part of the developer or platform strategy, not a standalone tool.

GenAI in platform engineering catalyzes a transformative shift for functional and imperative programmers alike.

By automating the mundane and illuminating new possibilities, it empowers developers to innovate at the frontier

of technology, redefining the boundaries of what can be built and how swiftly it can be brought to life.

How do we measure the ROI of AI assistance? Organizations must focus on how AI improves key performance

indicators related to benefits from productivity, cost savings, time-to-market, developer satisfaction, and

system reliability. Quantify these benefits against AI implementation costs to provide a clear picture of the

AI’sfinancial and operations returns that will ultimately enhance the developer experience and the engineering

process. Apply prompts and supervised training to improve both through AI-driven automation. Let’s look at

the key components below.

Know what ‘good’ looks like

Prompt for tasks
Improving the

developer experience

‘ChatOps’

LLMs trained with
supervision for

platform planes

Developer Plane:
Version control, infrastructure-as-code, development

tools, paved road

Compliance and Governance Plane:
Pipelines, lightweight governance, FinOps compliance,

compliance at POC

Delivery Plane:
Containers, Kubernetes, workflow orchestration

Observability Plane:
Observability, integrations, alerts

Security Plane:
IAM, secret and encryption management, SIEM

P
la

tf
o

rm
 P

ro
d

u
ct

 M
a

n
a

g
e

m
e

n
t

(T
e

a
m

 t
o

p
o

lo
g

ie
s,

 t
e

ch
n

ic
a

l p
ro

d
u

ct

m
a

n
a

g
e

m
e

n
t,

 v
a

lu
e

 m
o

d
e

lin
g

)

Developer plane: Deals with version control, infrastructure-as-a-code, developer tools, and roadmap

planning.

Compliance and governance plane: Ensures that pipelines, governance policies, and compliance

standards (like FinOps) are followed.

Delivery plane: Manages containerization, Kubernetes, and orchestration for automating workflows.

Observability plane: Focuses on observability tools, integrations, and alerts for monitoring the system’s

health.

Security plane: Covers identity and access management, encryption, security information,

and event management.

11

8

Brillio is one of the fastest growing digital technology service providers and the

partner of choice for many Fortune 1000 companies seeking to turn disruption into a

competitive advantage through innovative digital adoption. We help clients harness

the transformative potential of the four superpowers of technology: cloud computing,

Internet of Things (IoT), artificial intelligence (AI) and mobility. Born digital in 2014, we

apply our expertise in customer experience solutions, data analytics and AI, digital

infrastructure and security, and platform and product engineering to help clients

quickly innovate for growth, create digital products, build service platforms, and drive

smarter, data-driven performance. With 17 locations across the U.S., the UK,

Romania, Canada, Mexico, and India, our growing global workforce of nearly 6,000

Brillians blends the latest technology and design thinking with digital fluency to solve

complex business problems and drive competitive differentiation for our clients. Brillio

has been certified by Great Place to Work since 2021.

About Brillio

https://www.brillio.com/

Contact Us: info@brillio.com

