Improving Predictive Code Quality
Using Machine Learning

Introduction

Software Engineering has become an important aspect of driving product-led competitive advantage in the
market for organizations.

However, poor software quality reduces customer satisfaction. High-quality software, on the contrary, can
prevent the need for repairs and reworks by more than 70%. This also reduces the associated application
maintenance and support costs.

Over the years, we have witnessed significant advancements in Machine Learning (ML) and Deep Learning (DL)
techniques, specifically in the domain of image, text, and speech processing. These advancements, coupled with
readily available open-source code, its associated artifacts, and accelerated hardware, have facilitated the use of
ML and DL techniques to address software engineering problems.

This is done through quality matrices, which are dynamically collected and shape the developer model. These

techniques can be applied for software testing, source code quality analysis, program synthesis, code completion,
and vulnerabilities analysis that involves source code analysis. Source code analysis involves tasks that take the

www.brillio.com/ info@brillio.com

source code as input, process it, and/or produce source code as output. Source code representation, code
quality analysis, testing, code summarization, and program synthesis are applications that involve source

code analysis.

The below diagram illustrates the standard steps as per source code analysis.

Step 1

Data Understanding
and Preprocessing

Step 2
DL Model

Building
and Training

Step 3

Validation and
Interpretation

Visualization

Real-world Data
Data Annotation

Visualization and
testing simple tasks

Preprocessing
and
Augmentation

Learning Type Tasks
Discriminative, Generative, Prediction, Detection,
Hybrid Classification, etc.

DL Methods
MLP, CNN, RNN, GAN, AE,
DBN, DTL, AE+CNN, etc.

DL Model
Training

Performance Analysis

Model Interpretation and
Conclusion Drawing

Source code defects correction annual cost is around US $312 billion.

-Cambridge University

Challenges Without Predictive Code Quality
e The Decline in Code Health: A common theme across software engineering is that seldomly some property
of the current code causes a decline in quality which can be identified through ML.

e The Plethora of Tools: Each code analysis tool in the market is designed with many redundant features, and
choosing the right tool is a complex task.

e Traditional Software Development: Traditional software development and the development of ML systems
are inherently different. Phases of ML development are very exploratory in nature and highly domain and

problem dependent.

® Effective Feature Engineering: Features represent the problem-specific knowledge in the pieces extracted
from data; the effectiveness is low without predictive analysis

® Metrics to Measure: There are rarely any metrics to measure the quality and take preventive decisions

¢ Code Quality Trends: Scope for improvements without code quality trends

Solution Overview

There are several ML techniques that are used for every category. It is evident from the reference list that
supports vector machine (SVM), and decision tree (DT) is the most frequently employed ML techniques.

On the DL side, the recurrent neural network (RNN) family (including long short-term memory (LSTM) and
gated recurrent unit(GRU)) are the most deployed.

In the following section, we will summmarize the method and then deep dive into each category and
sub-category while breaking down the entire workflow of a code analysis task into fine-grained steps.

Although there are different workflows to achieve the predictive metrics with software engineering, two
important fundamental types of workflows are described in this article which help in providing predictive
code quality metrics are as below:

Code Analysis Workflow Defect Prediction Workflow

Most used ML techniques

(RNN Recurrent Neural Network .
Software metrics allow
DNN Deep Neural Network measurement and evaluation,
LSTM Long Short-Term Memory controlling the software product and
SVM Support Vector Machine processes improvement. They are
: essential resources to improve quality
CNN Convolusion Neural Network .
and cost control during software
GNN Graph Neural Network development.
L ANN Artificial Neural Network

Code Analysis Workflow: Solution Approach

Raw source code cannot be fed directly to a DL model. Code representation is the fundamental activity to
make source code compatible with DL models by preparing a numerical representation of the code to further
solve a specific software engineering task.

Most techniques extensively utilize syntax, structure, and semantics. The activity transforms source code into a
numerical representation making it easier to further use the code by ML models to solve specific tasks such as
code pattern identification, method name prediction, and comment classification.

AST , sequence of tokens, Token- based , path- based, RNN (LSTM and GRU), CNN,
abstract semantic graph, CFG and graph-based features GNN, DNN, SVM

ML Model Training

Software Source Code Code
Repositories Model Features
Legend
Training Phase

110
—_— # Inference Phase @ # {108::} #

Source Code # Both Phases

ML Model Code Representation Applications

The above diagram provides an overview of a typical pipeline associated with code representation. In the
training phase, many repositories are processed to train a model, which is then used in the inference phase.

Source code is pre-processed to extract a source code model (such as an abstract syntax tree (AST) or a
sequence of tokens), which is fed into a feature extractor responsible to mine the necessary features (for
instance, ASTpaths and tree-based embeddings).

Then, an ML model is trained using the extracted features. The model produces a numerical (i.e., a vector)
representation that can be used further for specific software engineering applications such as defect
prediction, vulnerability detection, and code smells detection.

The different stages are as follows-

e Model generation: Code representation efforts start with preparing a source code model. Most of the
research generates AST.

e Feature extraction: Relevant features need to be extracted from the prepared source code model for further
processing. Another set uses the graph-based feature and uses DL to learn features automatically.

® ML model training: Many of the studies rely on the RNN-based DL model. A typical output of a code
representation technique is the vector representation of the source code. The exact form of the output vector
may differ based on the adopted mechanism. Often, the code vectors are application-specific, depending
upon the nature of the features extracted and the training mechanism.

Defect Prediction Workflow: Solution Approach

The below diagram depicts a common pipeline used to train a defect prediction model. The first step of this
process is to identify the positive and negative samples from a dataset where samples could be a type of source
code entity such as classes, modules, files, and methods.

Next, features are extracted from the source code and fed into an ML model for training.

Finally, the trained model can classify different code snippets as buggy or benign based on the encoded
knowledge.

Code quality metrics, DL
representation of code, code
changes

RF, SVM, DT, AdaBoost, NB,

Existing datasets (e.g., CNN, RNN

PROMISE), Synthetic datasets

Data Labelling Feature Extraction ML Model Training

Code
Software Labelled Features

Repositories Data I g

Source Code ML Model

L

)
Legend \.Aj

7 2N
Training Phase * Inference Phase # Both Phases j -\

Identified
bugs

® Data Labeling: To train an ML model for predicting defects in source code, a labeled dataset is required.
Most of the research recommends using the PROMISE dataset, while others use the Continuous
Integration (Cl) dataset and synthetic dataset.

o Feature Extraction: The most common features to train a defect prediction model are the source code
metrics such as Lines of Code, Number of Children, Coupling Between Objects, and Cyclomatic
Complexity.

Other methods are Principal Component Analysis (PCA)—to limits the number of features and Sequential
Forward Search (SFS) to extract relevant source code metrics.

The method named Transfer Learning Code Vectorizer generates features from source code by using a
pre-trained code representation dl model. Another approach for detecting defects is capturing the
syntax and multiple levels of semantics in the source code.

A tree-based LSTM model by using source code files as feature vectors. Subsequently, the trained model
receives an AST as input and predicts if the file is clear from bugs or not. Specifically, DTL-DP visualizes
the programs as images and extracts feature out of them by using a self-attention mechanism.

® ML Model Training: To train the model, most of the research used traditional ML algorithms such as
Decision Tree, Random Forest, Support Vector Machine, and AdaBoost. In contrast to the above studies,
researchers used DL models such as CNN and RNN-based models for defect prediction. Moreover, by
using DL approaches, authors achieved improved accuracy for defect prediction, and they pointed out
bugs in real-world applications.

66

Although the potential for success is enormous, delivering business impact
from Al initiatives takes much longer than anticipated.

-Chirag Dekate,

Senior Director Analyst, Gartner , ,

Any industry can use predictive code quality to reduce risks, optimize operations and increase revenue. Some
of the standard benefits and references from various industries that had the benefit with other similar
solutions are:

Benefits

Overcome Vulnerabilities: Using these models, developers can decide the design patterns to ensure that the
source code complies with best practice standards and to discover vulnerabilities such as race conditions,
malware, memory leaks, buffer overflows, format string exploits, and security. Combining multiple analytics
methods can improve pattern detection and prevent criminal behavior.

“Commonwealth Bank uses ML to predict the likelihood of fraud activity for any given transaction before it is
authorized - within 40 milliseconds of the transaction initiation”.

Zero Defects: These workflows can be leveraged:

® Processing data which allows interpreting the prediction result and enables quality-based
process-integrated decision support.

e Qualitative Metrics: Predictive metrics are more advanced and one of the critical keys which can allow
measurement and evaluation, controlling the software product and processes improvement.

® Predictive Delivery: These methods can provide more accurate estimates of the time, effort, and cost
associated with software development. It can help developers and development managers understand
whether teams can meet their deadlines, improve process flows, identify the most common issues
through metrics.

® Visuadlizations For Attention: Most industries use predictive models to improve service and performance,
detect and prevent fraud, and to better understand consumer behavior. Also “Decision Tree” models
help to predict the most common journeys among customers and prospects for a specific timeframe.

“Staples gained customer insight by analyzing behavior, providing a complete picture of their customers,
and realizing a 137% ROI".

Below is a quick navigation guide for any organization that wishes to maximize the benefits of adopting
predictive code quality-

Determine What You're Trying to Achieve: Before you even write a line of code, work out exactly
why you are writing that code. What ML technology is the best suitable for predicting your code
quality. What outputs are you hoping to produce and what are you going to do with them once you
get them? Visualize the automated code reviews and analysis.

Improving Your UX/UI: Software Engineering and development teams contribute more towards
UI/UX, which is crucial on the business front. Predictive code quality can help maintain high-end user
satisfaction and can remediate any defects. Predictive code quality mainly showcases the practices
and coding style an individual or a team follows. While a good quality code can be customized to
your users’ needs quite easily, a low-quality code can lead to frequent bugs and errors, degrading
user satisfaction in the long run.

Conclusion

Detecting security vulnerabilities in software before they are exploited has been a challenging problem
for decades. Traditional code analysis methods have been proposed but are often ineffective and
inefficient. This paper introduces an approach to developing a predictive code quality framework using
ML techniques. Moreover, this paper describes mostly used workflows for predictive code quality at a
high level. Still surveying to find the most suitable ML techniques for advanced software engineering.
However, most existing static code analysis tools and style checkers need to parse the code and often
even link it to fully apply their analysis.

References

https://drops.dagstuhl.de/opus/volltexte/2021/14431/pdf/OASlcs-SLATE-2021-14.pdf
https://ojs.bibsys.no/index.php/NIK/article/view/26/22

Appendix

List of ML techniques widely used for source code analysis:

ABOUT BRILLIO

At Brillio, our customers are at the heart of everything we do. We were founded on the philosophy that
to be great at something, you need to be unreasonably focused. That's why we are relentless about
delivering the technology-enabled solutions our customers need to thrive in foday’s digital economy.
Simply put, we help our customers accelerate what matters to their business by leveraging our
expertise in agile engineering to bring human-centric products to market at warp speed. Born in the
digital age, we embrace the four superpowers of technology, enabling our customers to not only
improve their current performance but to rethink their business in entirely new ways. Headquartered
in Silicon Valley, Brillio has exceptional employees worldwide and is trusted by hundreds of Fortune
2000 organizations across the globe.

D000

https://www.brillio.com/

Contact Us: info@brillio.com

AB

AE

ANN
ARM
BERT
Bi-GRU
Bi-LSTM
Bi-RMM
BiMMN
BMMN

BN
BP-AMNN
BR
CART

CMNN
Code2Vec

CoForest-RF

CsC
DEN
DDOMN
DM
Doc2Vec
DT
ELM
EMN-DE
FR-CMM
GAMN
GB
GEBT
GD
GED
GEP
GGMNM
GIMNMN
Glove
GMNN
GPT-C
GRU
HaM
HC
HMM
KM
KMM
LDn&
LLE
LOG
LR
LSTM
rMLP
MMR
MMM
MATM
MNE

AdaBoost

Autoencader

Artifical Meural Metwork
Association Rule Mining

BERT

Bidirectional GRLU

Bi-L5THM

Bidirectional RNM

Bilateral Merual Metwork

Bect Matching Meighbours
Bayes Met

Backpropagation AMNMN

Binary Relavance
Classification and Regression Treas
Conwvolution Meural Network
Codez2Vec

Co-Forest Random Forrest
Cost-Sensitive Classifier

Deep Belief Metworlk

Double Deep Q-MNetworks

Deep Meural Netwaork

DocZ2WVec

Decision Tree

Extreme Learning Machine
Encoder-Daecoder

Faster R-CHM

Generative Adwversarial Network
Gradient Boosting

Gradient boosted trees
Gradient Descent

Gaussian Encoder-Decoder
Gens Expression Programming
Gated Graph Neural Netwaork
Graph Interval Neural Metwork
Global Vectors for Word Representation
Graph MNeural Netwaork
Generative Praetrainaed Transformer for Code
Gated Recurrent Unit
Hierarchical Attention Metwork
Hierarchical Clustering

Hidden Markowv Model

KMeans

K Mearest Meighbours

Lingar Discriminant Analysis
Logistic Linear Regrassian
Logistic regression

Linear Regression

Long Short Term Memory
MMulti Level Percaeptron
Maximal Marginal Ralevancea
Memory Neural Network
Modular Tree-structured EMNM
Maive Bayes

Meural Language Model
Meural Machine Translation
Meural Network

ModeZWer

Residual Meural Metwork
Random Forrest

Ripper

Reinforcemant Learning
Recurrent Meural Network
Simulated Annsealing
Sequence-to-Seguence

Single Layer Perceptor
Statistical Machine Translation
Support Vector Machine
Support Vector Regression
Transformer

Vearsion Space Learning
Word2Vec

Code completion
Code representation

e

1

2

[y

e

P L

Code review

Code search
Dataset mining
Program comprehension

&
:
Q
3

Program synthesis
Quality assessment

(YR

b

. S

e
[
w

BoR

NE NE B e

b pﬂ

HRR R

B

P =
=0

Refactoring
Testing
Vulnerability analysis
Grand Total

=

Mo
HMH.Hm

B

=
o

[

[

s

[

ppﬁup
]

'

41
#HHHIHHIHHmlH.mHHHI.IHHhmmHMﬁHwHHmHHHHMHHIMIN.HHNHmIHHHHHHH

M
[y
(™

