
www.brillio.com

EMERGENCE OF
MICROSERVICE
ARCHITECTURE

Let's start
something

TABLE OF CONTENTS

Introduction 3

Evolution of Application Architecture 4

Monolithic Architecture 4

Advantages 4

Disadvantages 4

Multi-tier architecture 5

Advantages 5

Disadvantages 5

Service-Oriented Architecture (SOA) 6

Advantages 6

Disadvantages 6

Microservices Architecture (MSA) 7

Macroservices 7

Need of Microservice Architecture 8

Best Practices for Designing Microservices 8

Advantages of Microservices 9

Disadvantages of Microservices 9

Conclusion 10

The trends for an enterprise and/or consumer to be
relevant digitally and the adoption of cloud-first &
mobile-first approach has pushed product vendors and
solution frameworks, to evolve from a closed and vendor
only implementation business to a more vibrant and
extensible framework. This enables the consumers to
leverage functionality as-is and additionally extend on
the core functions to address current or evolving
business needs.

The rapid pace at which the technology is increasing
has raised the level of customer expectations as well as
the challenges faced by the business. This has forced
the businesses to provide services on which the
customers can build on. Let’s look on some significant
challenges that are faced by the organizations who are
trying to stay ahead in the competition.

First of all, the technology advancement has enabled
this world with lot of devices such as – smarter phones,
smart watches, beacons and the list is expected to
increase sooner. Everyone including the business
partners, consumers and employees anticipate round the
clock access to the business information, processes and
notifications. To increase the customer experience and
engagement, the organizations should keep the
customers connected through the all the latest devices
available in the market.

INTRODUCTION

Secondly, to stay in the competition, the
organizations have to innovate continuously and
adapt to the newer trends. They need to be as flexible
as possible to quicken their development process
which will reduce their time-to-market significantly.
With the liberal access to advanced technologies, it
will not take longer for a competitor to launch similar
innovation sooner in the market and gain the
first-mover advantage.

The organizations have recognized that importance
of enterprise architecture and its role in achieving the
digital strategy. Companies which adopted Monolithic
or Tightly-coupled SOA architecture are experiencing
difficulties in going digital as it requires a more open
architecture which can help them scale, develop and
deploy swi�ly.

Introduction 3

Evolution of Application Architecture 4

Monolithic Architecture 4

Advantages 4

Disadvantages 4

Multi-tier architecture 5

Advantages 5

Disadvantages 5

Service-Oriented Architecture (SOA) 6

Advantages 6

Disadvantages 6

Microservices Architecture (MSA) 7

Macroservices 7

Need of Microservice Architecture 8

Best Practices for Designing Microservices 8

Advantages of Microservices 9

Disadvantages of Microservices 9

Conclusion 10

ADVANTAGES DISADVANTAGES

EVOLUTION OF
APPLICATION
ARCHITECTURE
MONOLITHIC ARCHITECTURE
In Monolithic architecture, the applications are developed
and deployed as a single entity. It is the simplest form with
respect to the architectures as it does not involve many
actors. The application would mostly have single database
to which it communicates for storage and retrieval of the
data. Even today, most small or mid-sized architectures run
using this approach as the complexity of this architecture is
low.

But when organizations try to add any feature as a part of
innovation or try to integrate with external devices or third
party application, they encountered serious problems. Since,
the modules are dependent on each other, refactoring the
code becomes a painful process. It involves going through or
changing the whole of monolith and the change would
impact everyfunction of the architecture.

Simplest way of the
architectures

Suits projects with small
and easy scope

Easy to develop and
deploy

Easy to scale size-wise
by generating multiple
instances of application

Hard to Manage, test,
debug

Doesn’t suit applications
that evolve

Hard to learn the
application

Scales only in one
dimension - cannot scale
feature-wise

ADVANTAGES DISADVANTAGES

MULTI-TIER ARCHITECTURE
The growing size of monolithic architecture demanded
breaking of applications into logical tiers. By doing this the
developers have the choice of working on the specific layer
instead of the whole application, where the modification is
required. The 3-tier architecture with layers – presentation
layer, business logic layer and Data storage layer was most
the prevalent. All three layers were maintained as
independent module on isolated platforms.
Again in an evolving application, the business layer was
becoming a monolith itself, which posed the same problems
as monolith.

Making changes on one layer
without affecting the other
layers.

Secure business logic as there
is no direct access to DB

Migration to a new
presentation layer is easier

Each layer is independent and
accessible to independent
set of developers

Hard to Manage, test,
debug

Doesn’t suit applications
that evolve

Hard to learn the
application

Scales only in one
dimension - cannot scale
feature-wise

SERVICE-ORIENTED ARCHITECTURE
(SOA)
To overcome the complexity challenges monoliths, the
developers were forced to think of a way to break the
application under some logic. So they started visualizing the
application as collection of business capabilities which formed
as a basis for Service-Oriented Architecture.

In SOAs, the components were divided based on the functions
and the services were created to support their functionalities.
These services communicate via a common interface
Enterprise Service Bus. Few organizations implemented this
rightly and thus SOA helped those organizations overcome the
challenges posed by monolithic architecture. Additionally, SOAs
improved the reusability of code

SOA eventually became a buzz word and few misperceived
implementation of SOA will suit any development project.This
is overkill and actually increased the complexity. Some
developers forcibly separated the functionalities where
monolithic architecture could have done the job easily. In cases,
where the scope is limited for SOAs, there is no reason for
introducing the complexity at architectural level.

Besides, few vendors used this opportunity to sell the
middleware platform, which added up to the already existing
complexities and resulted in SOAP and ESBs. Though SOA was
good architecture and solved major problems, there were no
bounded concepts on how to use it which itself was the
drawback of this architecture.

Business Logic

MONOLITHIC
ARCHITECTURE

Data
Layer

Presentation LayerADVANTAGES DISADVANTAGES

Loosely coupled than
monoliths

Easy to manage, test &
debug

Reusabilityof services

Flexible and Easy to scale

Migrating to SOA when
there is no need to poses
problems

Change to SOA is big
process and can’t be undone

High configuration cost as
the application evolved

SOA not implemented
properly will be semi
-monoliths

Service- Oriented
Architeture

Multi-layered Architecture

MICROSERVICES ARCHITECTURE
(MSA)
Microservice architecture is the latest method to built
application by breaking the application into compostable
services. The services created in this architecture are kept
“smaller” i.e. one service focusses on one function only. Each
service is managed by one small team and that team takes the
complete ownership of the particular service. Similarly, there
are lots of small services and thus, the development, testing
and deployment of all these services can be carried out
independently.

The evolution of microservices is considered as a reaction to
the “vendor-driven” SOA.It is based on SOA with the necessary
modifications required to make it effective. Adrian Cockcro�,
who was responsible for MSA implementation in Netflix,
defines it as “loosely couple SOAs with bounded contexts”.

MACROSERVICES
The combination of one or more microservices components to
form a logical feature is called as macroservices. These
macroservices can be exposed as APIs for integrating with
internal or external applications. They serve as a feature which
can be reused in multiple applications.

The following image shows the microservices
architecture in action:

Another macroservice
created from set of
reusable
macroservices

A set of reusable
macroservices created
from microservices

A set of reusable
macroservices
communicating with
each other using
standardized
protocol

NEED OF
MICROSERVICE
ARCHITECTURE
The changing business needs has to be dynamically
addressed by the developers. A more loosely-coupled
architecture approach would help them to build and deploy
applications with celerity.

As Gartner stated in Top 10 Strategic Technology Trends for
2016,

“Monolithic, linear application designs (e.g., the three-tier
architecture) are giving way to a more loosely coupled
integrative approach: the apps and services architecture.
Enabled by so�ware-defined application services, this new
approach enables Web-scale performance, flexibility and
agility.”

Gartner also acknowledges the rapid growth of Microservice
architecture by stating that,

“Microservice architecture is an emerging pattern for building
distributed applications that support agile delivery and scalable
deployment, both on-premises and in the cloud. Containers are
emerging as a critical technology for enabling agile develop-
ment and microservice architectures. Bringing mobile and IoT
elements into the app and service architecture creates a
comprehensive model to address back-end cloud scalability and
front-end device mesh experiences. Application teams must
create new modern architectures to deliver agile, flexible and
dynamic cloud-based applications with agile, flexible and
dynamic user experiences that span the digital mesh.”

This can be validated with the real life examples of PayPal,
Amazon, Netflix and GILT.com having already shi�ed from
monolithic to microservice architecture. This shi� helped
these organizations make “focused” service components
which are small, independent and can be managed by a
small two-pizza team, as Amazon calls it.

BEST PRACTICES FOR DESIGNING
MICROSERVICES
Architecting, deploying and maintaining microservices, if not
managed correctly, can result in over-consumption of human
as well as infrastructure resources. The following best
practices would keep the systems efficient and scalable while
the microservices based solutions are implemented.

Cache highly-used microservices to avoid the network
traffic congestion

Adhere to DevOps cultural practices. Development
resources need to own the changes all the way to
production and support them

Pass the data between microservices through http
headers to minimize the traffic congestion

Implement message queueing services wherever possible

A-synchronize everything possible to improve the
performance

Implement access restriction protocols to reduce the
availability of microservices to avoid unauthorized access

Keep separate data store for each microservices

Do separate build for each microservices

Replace silos with microservice teams

Having explained and said so much about microservice
doesn’t mean that we have found a perfect architecture.
It may be a buzz word in industry but no technology is a
silver bullet. It is good to know the drawbacks of a
technology before adopting it

Latency Problems: Developing microservices means
development of distributed systems. There may be
multiple requests travelling between the modules
which possibly might induce latency

Developer Mind-Set: Developers tend to concentrate on
decomposing the services and write fine grained
services. The goal is to decompose the application into
compostable microservices

Inter-Process Communication: Managing the complexity
of Inter Process Communication mechanism could be
challenging. Implementing retry logic, addressing
latency issues and partial failures due to the
unavailability of services would be critical.

Shared DB Aarchitecture: Segregation of data by
consumer and securing the services is another critical
need

Service Rollout: Ensuring consistency of upgrades,
rollout of service updates has to be orchestrated
through a well-defined automated process.

DISADVANTAGES OF
MICROSERVICES

The benefits of adopting microservices

Fault Isolation: The larger applications can remain
mostly unaffected by the failure of one or two services

Technology Independent: Removes the constraint on
long-term commitment to one technology stack. If you
want to try out a new technology stack on any individual
service, you can go ahead. This essentially means that
the dependency concerns are lesser than they are in
monolithic services and rolling back any blunder done is
also easier

Easy to Learn: Makes it easier for a new developer or
an architect to understand the functionality of the
application

Easy to Manage: A small team takes the complete
ownership for the microservice component. A smaller
project is apparently easier to manage than big
projects.

ADVANTAGES OF
MICROSERVICES

Building a complex API platform is inherently difficult. A
monolithic or a tightly coupled SOA architecture makes
sense only in the case of simple, lightweight platform.

The implementation of microservices based API
platform seems to solve the problems that arises out of
monolithic or tightly coupled SOA

With no technology dependency using microservices,
newer services can be created in lesser time to
support any latest devices launched in the market

There are no more hurdles for innovations. The
time-taken to develop and deploy a minor feature is
less than a day

Integration is not painful anymore. The organization
can now collaborate with customers more easily to
make the organization’s capabilities reach bigger set
of audience

CONCLUSION

Microservices based SDK can be a strategy for the
organizations to align IT assets with business capabilities,
business resources and business processes. Of course as
Fred Brooks said 30 years ago, there are no silver bullets.
But if you are looking for a distributed system to simplify
your API platform and develop SDK that can help
developers creating applications and integrating them
quickly, then microservices based SDK should fit you.

